Activating oxygen chemistry on metal and metal oxides: design principles of electrochemical catalysts
[摘要] Electrochemical energy storage and conversion devices are important for the application of sustainable clean energies in the next decades. However, the slow kinetics of oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) lead to great energy loss in many electrochemical energy devices, including polymer electrolyte membrane fuel cells (PEMFCs), water splitting electrolyzers, and rechargeable metal-air batteries, which hampers the development of new-energy applications such as electric vehicles. To increase the energy efficiency of ORR and OER processes, various catalysts have been studied for oxygen electrocatalysis, but they are still not active enough or not stable enough in developing commercial friendly electrochemical devices. In this work, systematic studies have been applied on two catalyst systems: Pt-metal (Pt-M) alloys for ORR and perovskite oxides for OER. The combination of electrochemical characterizations with transmission electron microscopy (TEM) techniques provides deeper insights on how the basic physical and chemical properties could influence the stability and activity of the catalysts. For Pt-M ORR catalysts, it is found that using transition metal with more positive dissolution potential or forming protective Pt-rich shell by mild acid treatment can improve their stability in acid electrolyte. While for perovskite oxide OER catalysts, it is found that a closer distance between O 2p-band and Fermi level leads to higher activity but lower stability at pH 7, due to the activation of lattice oxygen sites. Moreover, with the help of environmental TEM techniques, structural oscillations are observed on perovskite oxides in the presence of water and electron radiation, caused by the oxygen evolution after water uptake into the oxide lattice. Such structural oscillation is greatly suppressed if the formation and mobility of lattice oxygen vacancy is hampered. The various new activity and stability descriptors for oxygen electrocatalysis found in this work not only provided practical guidelines for designing new ORR or OER catalysts, but also improved our fundamental understandings of the interactions between catalysts and electrolyte.
[发布日期] [发布机构] Massachusetts Institute of Technology
[效力级别] [学科分类]
[关键词] [时效性]