已收录 273134 条政策
 政策提纲
  • 暂无提纲
Predicted Performance of an X-Ray Navigation System for Future Deep Space and Lunar Missions
[摘要] In November 2017, the NASA Goddard Space Flight Center (GSFC) Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) experiment successfully demonstrated the feasibility of X-ray Pulsar Navigation (XNAV) as part of the Neutron Star Interior Composition Explorer (NICER) mission, which is an X-ray Astrophysics Mission of Opportunity currently operating onboard the International Space Station (ISS). XNAV provides a GPS-like absolute autonomous navigation and timing capability available anywhere in the Solar System and beyond. While the most significant benefits of XNAV are expected to come in support of very deep-space missions, the absolute autonomous navigation and timing capability also has utility for inner Solar System missions where increased autonomy or backup navigation and timing services are required, e.g., address loss of communication scenarios.The NASA commitment to develop a Gateway to support exploration of the Moon and eventually Mars, as well as current and future robotic missions such as James Webb Space Telescope (JWST), New Horizons, and much more, certainly will tax the existing ground based infrastructure in terms of availability. There- fore, an extended look at the feasibility and potential performance of XNAV for comparable missions is warranted. In this paper, we briefly review the XNAV concept and present case studies of its utility and performance for a Gateway orbit, Sun-Earth libration orbit, and a deep space transit trajectory.
[发布日期] 2019-01-31 [发布机构] 
[效力级别]  [学科分类] 工程和技术(综合)
[关键词] AUTONOMOUS NAVIGATION;DEEP SPACE;ERROR ANALYSIS;PULSARS;SPACE MISSIONS;TIME MEASUREMENT;TRAJECTORIES;X RAYS;ASTROPHYSICS;CONCENTRATORS;EARTH ORBITS;REAL TIME OPERATION;STELLAR ROTATION;X RAY OPTICS [时效性] 
   浏览次数:25      统一登录查看全文      激活码登录查看全文