Impact of Powder Variability on the Microstructure and Mechanical Behavior of Selective Laser Melted Alloy 718
[摘要] Powder-bed additive manufacturing processes use fine powders to build parts layer-by-layer. Alloy 718 powder feedstocks for selective laser melting (SLM) additive manufacturing are produced commercially by both gas and rotary atomization and are available typically in the 10-45 or 15-45 microns size ranges. A comprehensive investigation was conducted to understand the impact of powder variability on the microstructure and mechanical behavior of SLM 718 heat treated to Aerospace Material Specification (AMS) 5664. This study included sixteen virgin powders and three once-recycled powders within the 10-45 and 15-45 microns size ranges that were obtained from seven direct source suppliers and one reseller. Although alike as highly regular spheroids, these powders showed distinct differences in composition (especially Al, C and N contents), particle size distributions, and powder features such as degree of agglomeration, fusion and surface roughness. Compositional differences expectedly had the strongest impact on microstructure. High N and C contents formed TiN-nitrides and/or (Nb,Ti,Mo)-C carbides on the grain boundaries, prevented recrystallization during heat treatment, and resulted in retained (001)-scalloped shaped grains that ranged from 19 to 41 microns in average size. In the absence of this particle pinning, the average grain size of the heat treated SLM 718 ranged from 51 microns to 90 microns. Room temperature tensile and high cycle fatigue (HCF) testing compared as-fabricated (AF) and low stress ground (LSG) surface conditions. Tensile testing revealed consistent behavior between the two surface conditions and amongst the powder lots. The finer grained SLM 718 builds displayed the lowest tensile properties. A SLM 718 build fabricated from a powder with eight times lower C content showed statistically better tensile properties presumably due to enhanced coarsening of (delta)-Ni3Nb precipitates. The specimens from once-recycled powders had slightly higher tensile strengths and slightly higher ductility compared to their virgin equivalents; once-recycling also did not substantially degrade the mean HCF life. The LSG fatigue lives agreed with conventionally manufactured 718 data, while AF lives exhibited a knock-down due to surface roughness. The fatigue lives of AF specimens were statistically equivalent across powder lots except for one and failures typically initiated at stress concentrators associated with SLM surface asperities. Fatigue testing of low stress ground specimens result in both transgranular and within facet crack initiations. More than half of the cracks initiated from these facets for the machined condition; however, these facets appeared to be within grains that were larger-than-average in size. A nitrogen-atomized powder with fine prior particles of TiN-nitrides and M(Ti,Nb,Mo)C carbides from atomization on powder surfaces resulted in the best fatigue performance with segregation of these particles to the SLM 718 grain boundaries leading to higher resistance to early-stage crack propagation. Typically the fine-grained builds with minor phases along the grain boundaries did not perform well in fatigue, whereas a larger-grain build with lower carbon content and coarser delta-Ni3Nb precipitates showed the next best HCF response. Further details of the build microstructure and its impact on tensile and fatigue behavior was considered.
[发布日期] 2018-06-03 [发布机构]
[效力级别] [学科分类] 金属与冶金
[关键词] HEAT RESISTANT ALLOYS;MECHANICAL PROPERTIES;VARIABILITY [时效性]