Multi-Year Movements of Blacknose, Finetooth, & Sharpnose Sharks in the US South Atlantic Based on Monitoring Within a Regional-Scale Acoustic Telemetry Network
[摘要] Despite their numerical abundance and economic value, the behavior of many small coastal sharks in the US South Atlantic has been only coarsely described. Here we present movement summaries for blacknose (Carcharhinus acronotus), finetooth (C. isodon), and Atlantic sharpnose shark (Rhizoprionodon terraenovae) as they travelled through a regional-scale acoustic telemetry network, offering direct comparisons of habitat utilization, site fidelity, and the extent and timing of coastal migrations. From 2013-2016, 165 total sharks were implanted with acoustic transmitters at Cape Canaveral, Florida, and tracked up to four years. While blacknose sharks were common off east Florida year-round, finetooth sharks were most abundant winter through early spring and sharpnose sharks summer through fall. Blacknose sharks also moved more slowly (mean 0.8 kilometers per hour) and had the broadest depth preferences, while finetooth sharks were strongly shore-associated and sharpnose preferred proportionally deeper waters. All species exhibited low site fidelity when at Cape Canaveral, remaining at the same site for more than 1 hour on average, even when associated with deeper hard-bottom sites. Most finetooth and many blacknose undertook spring migrations as far as Virginia and North Carolina, respectively, before returning to east Florida each winter. Sharpnose also made regular northward movements that were not as obviously seasonally-driven. Multiple individuals of all species, particularly females, returned briefly south to Cape Canaveral in mid-summer, illustrating that coastal migrations in these species are more akin to seasonal expansions of their geographic ranges as opposed to a synchronized shift of the entire population along the coast.
[发布日期] 2019-07-24 [发布机构]
[效力级别] [学科分类] 生物科学(综合)
[关键词] SHARKS;POPULATIONS;HABITATS;COASTAL ECOLOGY;MIGRATION;MARINE ENVIRONMENTS;BIOTELEMETRY;TRANSMITTER RECEIVERS;UNDERWATER ACOUSTICS;MERRITT ISLAND (FL) [时效性]