已收录 271055 条政策
 政策提纲
  • 暂无提纲
Inference and prediction in a multiple structural break model of economic time series Yu Jiang , University of Iowa Follow
[摘要] This thesis develops a new Bayesian approach to structural break modeling. The focuses of the approach are the modeling of in-sample structural breaks and forecasting time series allowing out-of-sample breaks. Our model has some desirable features. First, the number of regimes is not fixed and is treated as a random variable in our model. Second, our model adopts a hierarchical prior for regime coefficients, which allows for the regime coefficients of one regime to contain information about regime coefficients of other regimes. However, the regime coefficients can be analytically integrated out of the posterior distribution and therefore we only need to deal with one level of the hierarchy. Third, the implementation of our model is simple and the computational cost is low. Our model is applied to two different time series: S&P 500 monthly returns and U.S. real GDP quarterly growth rates. We linked breaks detected by our model to certain historical events.
[发布日期]  [发布机构] 
[效力级别]  [学科分类] 
[关键词]  [时效性] 
   浏览次数:3      统一登录查看全文      激活码登录查看全文