已收录 273081 条政策
 政策提纲
  • 暂无提纲
Enhancing quantum-dot luminescence in visible and infrared light emitting devices
[摘要] We investigate how the external quantum efficiency (EQE) of colloidal quantum-dot light emitting devices (QD-LEDs) can be enhanced by addressing in situ QD photoluminescence (PL) quenching mechanisms occurring with and without applied bias. QD-LEDs promise efficient, high colour-quality solid-state lighting and displays, and our cost analysis of industrial-scale QD synthesis suggests they can be cost competitive. Efficiency ;;roll-off;; at high biases is among the most enduring challenges facing all LED technologies today. It stands in the way of high efficiencies at high brightness, yet it has not previously been studied in QD-LEDs. Simultaneous measurements of QD electroluminescence (EL) and PL in an operating device allow us to show for the first time that EQE roll-off in QD-LEDs derives from the QD layer itself, and that it is entirely due to a bias-driven reduction in QD PL quantum yield. Using the quantum confined Stark Effect as a signature of local electric fields in our devices, the bias-dependence of EQE is predicted and found to be in excellent agreement with the roll-off observed. We therefore conclude that electric field-induced QD PL quenching fully accounts for roll-off in our QD-LEDs. To investigate zero-bias PL quenching, we fabricate a novel near-infrared (NIR)-emitting device based on core-shell PbS-CdS QDs synthesised via cation exchange. QDs boast high PL quantum yield at wavelengths beyond 1 [mu]m, making them uniquely suited to NIR applications such as optical telecommunications and computing, bio-medical imaging, and on-chip bio(sensing) and spectroscopy. Core-shell PbS-CdS QDs enhance the peak EQE of core-only PbS control devices by 50- to 100-fold, up to 4.3 %. This is more than double the efficiency of previous NIR QD-LEDs, making it the most efficient thin-film NIR light source reported. PL measurements reveal that the efficiency enhancement is due to passivation of the PbS core by the CdS shell against a non-radiative recombination pathway caused by a neighboring conductive layer within the device architecture.
[发布日期]  [发布机构] Massachusetts Institute of Technology
[效力级别]  [学科分类] 
[关键词]  [时效性] 
   浏览次数:2      统一登录查看全文      激活码登录查看全文