已收录 271055 条政策
 政策提纲
  • 暂无提纲
Strength characterization of wood to wood connections using stress field analysis
[摘要] Minimizing construction cost and material usage are two dominant aspects in structural design. As a building material, timber presents a cheap, renewable option. However, current practice favors steel connections for wood structures. Wood to wood connections offer a solution to the minimization of steel connections. While some wood-only connections are referenced in timber codes, small modifications to these designs as well as a multitude of other possible connection types are yet to be characterized. This thesis analyzes wood to wood joints with stress fields. Stress field analyses may quickly and easily enable the design of timber joints and characterize the maximum loads they can handle. First, this thesis surveys and interconnects the theoretical concepts of wood behavior, plastic design, stress fields, and graphic statics. Additionally, this thesis tests these relationships empirically by load testing a designed double-birdsmouth connection and observing inconsistencies between the theoretical stress field model, code-required strength, and physical tests. The thesis shows that stress fields are a suitable design approach when considering the design of this wood-wood joint. The results also show that careful consideration must be attributed to the material properties of the wood as well as the possible failure modes. This thesis finally shows that shear failure should be checked in addition to compressive and tensile failure and provides a quick method to ensure a safe design.
[发布日期]  [发布机构] Massachusetts Institute of Technology
[效力级别]  [学科分类] 
[关键词]  [时效性] 
   浏览次数:2      统一登录查看全文      激活码登录查看全文