已收录 272962 条政策
 政策提纲
  • 暂无提纲
Understanding the catalytic activity of oxides through their electronic structure and surface chemistry
[摘要] The intermittent nature of renewable energy sources requires a clean, scalable means of converting and storing energy. Water electrolysis can sustainably achieve this goal by storing energy in the bonds of oxygen and hydrogen molecules. The efficiency of this storage-conversion process is largely determined by the kinetic overpotential required for the oxygen evolution and reduction reactions (OER and ORR), respectively. This thesis focuses on transition metal oxides as alternative oxygen catalysts to costly and scarce noble metals. In order to develop descriptors to improve catalytic activity, thus reducing material cost for commercial technologies, this work studies fundamental processes that occur on model catalyst systems. Electrochemical studies of epitaxial oxide thin films establish the intrinsic activity of oxide catalysts in a way that cannot be realized with polydisperse nanoparticle systems. This thesis has isolated the activity of the catalyst on a true surface-area basis, enabling an accurate comparison of catalyst chemistries, and also revealed how different terminations and structures affect the kinetics. These studies of epitaxial thin films are among the first to probe phenomena that are not straightforward to isolate in nanoparticles, such as the role of oxide band structure, interfacial charge transfer (the ;;ligand;; effect), strain, and crystallographic orientation. In addition, these well-defined surfaces allow spectroscopic examinations of their chemical speciation in an aqueous environment by using ambient pressure X-ray photoelectron spectroscopy. By quantifying the formation of hydroxyl groups, we compare the relative affinity of different surfaces for this key reaction intermediate in oxygen electrocatalysis. The strength of interaction with hydroxyls correlates inversely with activity, illustrating detrimental effects of strong water interactions at the catalyst surface. This fundamental insight brings molecular understanding to the wetting of oxide surfaces, as well as the role of hydrogen bonding in catalysis. Furthermore, understanding of the mechanisms of oxygen electrocatalysis guides the rational design of high-surface-area oxide catalysts for technical application.
[发布日期]  [发布机构] Massachusetts Institute of Technology
[效力级别]  [学科分类] 
[关键词]  [时效性] 
   浏览次数:4      统一登录查看全文      激活码登录查看全文