Improved Radiation Dosimetry/Risk Estimates to Facilitate Environmental Management Of Plutonium Contaminated Sites
[摘要] Currently available radiation dosimetry/health-risk models for inhalation exposure to radionuclides are based on deterministic radiation intake and deterministic radiation doses (local and global). These models are not adequate for brief plutonium (Pu) exposure scenarios related to Department of Energy (DOE) decontamination/decommissioning (D&D) operations because such exposures involve the stochastic-intake (StI) paradigm. For this paradigm, small or moderate numbers of airborne, pure, highly radioactive PuO2 particles could be inhaled and deposited in the respiratory tract in unpredictable numbers (stochastic) during D&D incidents. Probabilistic relationships govern intake via the respiratory tract for the StI paradigm. An StIparadigm incident occurred on March 16, 2000, at Los Alamos National Laboratory. It involved eight workers who inhaled high-specific-activity, alpha-emitting (HSA-aE) 238PuO2-contaminated room air (glovebox-failure incident). Health-risk estimation is not trivial for the StI-exposure paradigm, especially for HSA-aE 238PuO2, as different individuals can have very different and uncertain radioactivity intakes for the same exposure duration and same incident. Indeed, this occurred in the Los Alamos incident. Rather than inappropriate point estimates of intake, dose, and risk, more appropriate probability distributions are needed. A main objective of this project has been to develop a stochastic dosimetry/risk computer model for evaluating radioactivity intake (by inhalation) distributions, organ dose distributions, and health risk distributions for DOE workers who may inhale airborne, alpha-emitting, pure PuO2 at DOE sites such as Rocky Flats. Another objective of this project has been to address the deterministic intake (DI) paradigm where members of the public could inhale, over years, millions and more resuspended, air-transported, PuO2-contaminated dust particles while residing (e.g., farmer) or working (e.g., office worker) at a remediated DOE site that contains mainly residual PuO2 (and daughters) in soil.
[发布日期] 2001-12-31 [发布机构] Lovelace Respiratory Research Institute (United States)
[效力级别] [学科分类]
[关键词] Radioactivity;Dusts;Management;Radioisotopes;Inhalation [时效性]