已收录 273506 条政策
 政策提纲
  • 暂无提纲
Functional composition and decomposition for signal processing
[摘要] Functional composition, the application of one function to the results of another function, has a long history in the mathematics community, particularly in the context of polynomials and rational functions. This thesis articulates and explores a general framework for the use of functional composition in the context of signal processing. Its many potential applications to signal processing include utilization of the composition of simpler or lower order subfunctions to exactly or approximately represent a given function or data sequence. Although functional composition currently appears implicitly in a number of established signal processing algorithms, it is shown how the more general context developed and exploited in this thesis leads to significantly improved results for several important classes of functions that are ubiquitous in signal processing such as polynomials, frequency responses and discrete multivariate functions. Specifically, the functional composition framework is exploited in analyzing, designing and extending modular filters, separating marginalization computations into more manageable subcomputations and representing discrete sequences with fewer degrees of freedom than their length and region of support with implications for sparsity and efficiency.
[发布日期]  [发布机构] Massachusetts Institute of Technology
[效力级别]  [学科分类] 
[关键词]  [时效性] 
   浏览次数:3      统一登录查看全文      激活码登录查看全文