已收录 271055 条政策
 政策提纲
  • 暂无提纲
Porosity Controls Spread of Excitation in Tectorial Membrane Traveling Waves
[摘要] Cochlear frequency selectivity plays a key role in our ability to understand speech, and is widely believed to be associated with cochlear amplification. However, genetic studies targeting the tectorial membrane (TM) have demonstrated both sharper and broader tuning with no obvious changes in hair bundle or somatic motility mechanisms. For example, cochlear tuning of Tectb[superscript –/–] mice is significantly sharper than that of Tecta[superscript Y1870C/+] mice, even though TM stiffnesses are similarly reduced relative to wild-type TMs. Here we show that differences in TM viscosity can account for these differences in tuning. In the basal cochlear turn, nanoscale pores of Tecta[superscript Y1870C/+] TMs are significantly larger than those of Tectb[superscript –/–] TMs. The larger pore size reduces shear viscosity (by ∼70%), thereby reducing traveling wave speed and increasing spread of excitation. These results demonstrate the previously unrecognized importance of TM porosity in cochlear and neural tuning.
[发布日期]  [发布机构] Elsevier
[效力级别]  [学科分类] 
[关键词]  [时效性] 
   浏览次数:3      统一登录查看全文      激活码登录查看全文