已收录 273081 条政策
 政策提纲
  • 暂无提纲
Enhanced electrical, optical and chemical properties of graphene oxide through a novel phase transformation
[摘要] Graphene oxide (GO) is a versatile, solution-processable candidate material for next-generation, large-area, ultrathin electronics, optoelectronics, energy conversion and storage technologies. GO is an atom-thick sheet of carbon functionalized with several oxygen-containing groups dominated by the epoxy and hydroxyl functional groups on the basal plane, with carboxyls and lactols at the sheet edges. It is well known that reduction of GO at temperatures > 150°C leads to the removal of oxygen atoms from the carbon plane, leading to the formation of reduced GO (rGO) structures. Although GO has been utilized for multiple applications in the last decade, our understanding of the structure-property relationships at the atomic-level has still been lacking owing to the amorphous nature and chemical inhomogeneity of GO, which has in turn limited our ability to design and tailor GO nanostructures for high-performance applications. In particular, the material;;s structure and its structural evolution at mild annealing temperatures (< 1000°C) has been largely unexplored. In this thesis, we use a combination of first-principles computations, classical molecular dynamics simulations based on reactive force fields and experiments to model realistic GO structures and develop a detailed understanding of the relationship between the carbon-oxygen framework and the sheet properties, at the atomic level. Based on our understanding, we demonstrate a new phase transformation in GO sheets at mild annealing temperatures (50-80°C), where the oxygen content is preserved and as-synthesized GO structures undergo a phase separation into prominent oxidized and graphitic domains facilitated by oxygen diffusion. Consequently, as-synthesized GO that absorbs mainly in the ultraviolet region becomes strongly absorbing in the visible region, photoluminescence is blue shifted and electronic conductivity increases by up to four orders of magnitude. We then use this novel phase transformation to improve two sets of applications. 1) We demonstrate that cell capture devices making use of phase transformed-GO substrates have higher capture efficiencies compared to devices making use of as-synthesized GO substrates. 2) We show that the reduction of phase transformed-GO leads to better electrical properties of rGO thin films. Our results fill an important gap and establish a complete theory for structural evolution of GO over the entire range of temperatures, i.e. from room temperature to ~1000°C. Taken together, this structural transition in GO enables us to predict and control the sheet properties in new ways, as opposed to reduction, which is till date the only handle to control the structure of GO. This could potentially open the door for completely new applications or for enhancing the performance of existing applications based on GO.
[发布日期]  [发布机构] Massachusetts Institute of Technology
[效力级别]  [学科分类] 
[关键词]  [时效性] 
   浏览次数:5      统一登录查看全文      激活码登录查看全文