Personalized routing for multitudes in smart cities
[摘要] Human mobility in a city represents a fascinating complex system that combines social interactions, daily constraints and random explorations. New collections of data that capture human mobility not only help us to understand their underlying patterns but also to design intelligent systems. Bringing us the opportunity to reduce traffic and to develop other applications that make cities more adaptable to human needs. In this paper, we propose an adaptive routing strategy which accounts for individual constraints to recommend personalized routes and, at the same time, for constraints imposed by the collectivity as a whole. Using big data sets recently released during the Telecom Italia Big Data Challenge, we show that our algorithm allows us to reduce the overall traffic in a smart city thanks to synergetic effects, with the participation of individuals in the system, playing a crucial role.
[发布日期] [发布机构] Springer
[效力级别] [学科分类]
[关键词] [时效性]