Dynamic response of 3D printed beams with damping layers
[摘要] 3D printers are a relatively new technology and they could be used in the future to 3D print structural components in buildings or bridges. The main advantages of using 3D printing would be the optimization of the structures. Effectively, with 3D printers, it is possible to generate polymers with different strengths and stiffnesses in the same structure. It is also possible to print very complex shapes and forms. This thesis will focuses on the dynamic response of 3D printed beams with damping layers. More precisely, natural frequency and damping ratio will be analysed in order to find the optimal location of the damping layers. For this experiment, three methods are used, one with an accelerometer, one with a high speed camera and one with a piezoelectric actuator. Characterization of the 3D printed material has been made to predict results. For the results, it is possible to conclude that using softer material as damping layer reduces the beam frequencies but increases the damping ratio. Also, in order to get the most efficient beam in terms of damping properties, the damping layers need to be close to the top and bottom surfaces as strains are larger. Finally, it can be say that a high speed camera is the best device to investigate the dynamic response of 3D printed materials.
[发布日期] [发布机构] Massachusetts Institute of Technology
[效力级别] [学科分类]
[关键词] [时效性]