已收录 270515 条政策
 政策提纲
  • 暂无提纲
A locking-free weak Galerkin finite element method for elasticity problems in the primal formulation
[摘要] This paper presents an arbitrary order locking-free numerical scheme for linear elasticity on general polygonal/polyhedral partitions by using weak Galerkin (WG) finite element methods. Like other WG methods, the key idea for the linear elasticity is to introduce discrete weak strain and stress tensors which are defined and computed by solving inexpensive local problems on each element. Such local problems are derived from weak formulations of the corresponding differential operators through integration by parts. Locking-free error estimates of optimal order are derived in a discrete H-1-norm and the usual L-2-norm for the approximate displacement when the exact solution is smooth. Numerical results are presented to demonstrate the efficiency, accuracy, and the locking free property of the weak Galerkin finite element method. Published by Elsevier B.V.
[发布日期] 2016-12-01 [发布机构] 
[效力级别]  Proceedings Paper [学科分类] 
[关键词] Weak Galerkin;Finite element methods;Weak divergence;Weak gradient;Linear elasticity;Polyhedral meshes [时效性] 
   浏览次数:2      统一登录查看全文      激活码登录查看全文