已收录 273594 条政策
 政策提纲
  • 暂无提纲
Combination optimization method of grid sections based on deep reinforcement learning with accelerated convergence speed
[摘要] A modern power system integrates more and more new energy and uses a large number of power electronic equipment, which makes it face more challenges in online optimization and real-time control. Deep reinforcement learning (DRL) has the ability of processing big data and high-dimensional features, as well as the ability of independently learning and optimizing decision-making in complex environments. This paper explores a DRL-based online combination optimization method of grid sections for a large complex power system. In order to improve the convergence speed of the model, it proposes to discretize the output action of the unit and simplify the action space. It also designs a reinforcement learning loss function with strong constraints to further improve the convergence speed of the model and facilitate the algorithm to obtain a stable solution. Moreover, to avoid the local optimal solution problem caused by the discretization of the output action, this paper proposes to use the annealing optimization algorithm to make the granularity of the unit output finer. The proposed method in this paper has been verified on an IEEE 118-bus system. The experimental results show that it has fast convergence speed and better performance and can obtain stable solutions.
[发布日期] 2023-10-06 [发布机构] 
[效力级别]  [学科分类] 
[关键词] grid section;deep reinforcement learning;convergence speed;discretize;loss function;annealing optimization algorithm [时效性] 
   浏览次数:1      统一登录查看全文      激活码登录查看全文