已收录 273506 条政策
 政策提纲
  • 暂无提纲
Leveraging linear mapping for model-agnostic adversarial defense
[摘要] In the ever-evolving landscape of deep learning, novel designs of neural network architectures have been thought to drive progress by enhancing embedded representations. However, recent findings reveal that the embedded representations of various state-of-the-art models are mappable to one another via a simple linear map, thus challenging the notion that architectural variations are meaningfully distinctive. While these linear maps have been established for traditional non-adversarial datasets, e.g., ImageNet, to our knowledge no work has explored the linear relation between adversarial image representations of these datasets generated by different CNNs. Accurately mapping adversarial images signals the feasibility of generalizing an adversarial defense optimized for a specific network. In this work, we demonstrate the existence of a linear mapping of adversarial inputs between different models that can be exploited to develop such model-agnostic, generalized adversarial defense. We further propose an experimental setup designed to underscore the concept of this model-agnostic defense. We train a linear classifier using both adversarial and non-adversarial embeddings within the defended space. Subsequently, we assess its performance using adversarial embeddings from other models that are mapped to this space. Our approach achieves an AUROC of up to 0.99 for both CIFAR-10 and ImageNet datasets.
[发布日期] 2023-10-30 [发布机构] 
[效力级别]  [学科分类] 
[关键词] linear mapping;adversarial defense;embedded representations;embeddings spaces;cross-model defense;convolutional neural network architectures [时效性] 
   浏览次数:2      统一登录查看全文      激活码登录查看全文