Hypermaps Over Non-Abelian Simple Groups and Strongly Symmetric Generating Sets
[摘要] A generating pair $x, y$ for a group $G$ is said to be symmetric if there exists an automorphism $\varphi_{x,y}$ of $G$ inverting both $x$ and $y$, that is, $x^{\varphi_{x,y}}=x^{-1}$ and $y^{\varphi_{x,y}}=y^{-1}$. Similarly, a group $G$ is said to be strongly symmetric if $G$ can be generated with two elements and if all generating pairs of $G$ are symmetric. In this paper we classify the finite strongly symmetric non-abelian simple groups. Combinatorially, these are the finite non-abelian simple groups $G$ such that every orientably regular hypermap with monodromy group $G$ is reflexible.
[发布日期] [发布机构]
[效力级别] [学科分类] 统计和概率
[关键词] [时效性]