已收录 273173 条政策
 政策提纲
  • 暂无提纲
Support Vector Machines for Classification of Temporomandibular Disorders from Facial Pattern Values
[摘要] The aim of this study is to develop a method for detection of temporomandibular disorder (TMD) based on visual analysis of facial movements. We analyse the motion of colour markers placed on the locations of interest on subjects faces in the video frames. We measured several features from motion patterns of the markers that can be used to distinguish between different classes. In our approach, both static and dynamic features are measured from a number of time sequences for classification of the subjects. A measure of nonlinear dynamics of the variations in the movement of colour markers positioned on the subjects faces was obtained via estimating the maximum Lyapunov exponent. Static features such as the number of outliers and kurtosis have also been evaluated. Then, Support Vector Machines (SVMs) are used to automatically classify all the subjects as belonging to individuals with TMD and healthy subjects.
[发布日期]  [发布机构] 
[效力级别]  [学科分类] 土木及结构工程学
[关键词] Temporomandibular disorder;maximum Lyapunov exponents;support vector machine [时效性] 
   浏览次数:1      统一登录查看全文      激活码登录查看全文