Directed Search Based on Improved Whale Optimization Algorithm for Test Case Prioritization
[摘要] With the advent of the information age, the iterative speed of software update is gradually accelerating which makes software development severely limited by software testing. Test case prioritization is an effective way to accelerate software testing progress. With the introduction of heuristic algorithm to this task, the processing efficiency of test cases has been greatly improved. However, to overcome the shortcomings of slow convergence speed and easy fall into local optimum, the improved whale optimization algorithm is proposed for test case prioritization. Firstly, a model called n-dimensional directed search space is established for the swarm intelligence algorithm. Secondly, the enhanced whale optimization algorithm is applied to test case prioritization while the backtracking behavior is conducted for individuals when hitting the wall. In addition, a separate storage space for Pareto second optimization is also designed to filter the optimal solutions of the multi-objective tasks. Finally, both single-objective and multi-objective optimization experiments are carried out for open source projects and real-world projects, respectively. The results show that the improved whale optimization algorithm using n-dimensional directed search space is more conducive to the decisions of test case prioritization with fast convergence speed.
[发布日期] [发布机构]
[效力级别] [学科分类] 自动化工程
[关键词] software testing;test case prioritization;swarm intelligence algorithm;whale optimization algorithm;directed search space [时效性]