已收录 271055 条政策
 政策提纲
  • 暂无提纲
Ancient Pbx-Hox signatures define hundreds of vertebrate developmental enhancers
[摘要] BackgroundGene regulation through cis-regulatory elements plays a crucial role in development and disease. A major aim of the post-genomic era is to be able to read the function of cis-regulatory elements through scrutiny of their DNA sequence. Whilst comparative genomics approaches have identified thousands of putative regulatory elements, our knowledge of their mechanism of action is poor and very little progress has been made in systematically de-coding them.ResultsHere, we identify ancient functional signatures within vertebrate conserved non-coding elements (CNEs) through a combination of phylogenetic footprinting and functional assay, using genomic sequence from the sea lamprey as a reference. We uncover a striking enrichment within vertebrate CNEs for conserved binding-site motifs of the Pbx-Hox hetero-dimer. We further show that these predict reporter gene expression in a segment specific manner in the hindbrain and pharyngeal arches during zebrafish development.ConclusionsThese findings evoke an evolutionary scenario in which many CNEs evolved early in the vertebrate lineage to co-ordinate Hox-dependent gene-regulatory interactions that pattern the vertebrate head. In a broader context, our evolutionary analyses reveal that CNEs are composed of tightly linked transcription-factor binding-sites (TFBSs), which can be systematically identified through phylogenetic footprinting approaches. By placing a large number of ancient vertebrate CNEs into a developmental context, our findings promise to have a significant impact on efforts toward de-coding gene-regulatory elements that underlie vertebrate development, and will facilitate building general models of regulatory element evolution.
[发布日期] 2011-12-30 [发布机构] 
[效力级别]  [学科分类] 
[关键词] Gene regulation;enhancer code;sea lamprey;Hox genes;embryogenesis [时效性] 
   浏览次数:5      统一登录查看全文      激活码登录查看全文