Improving Multilevel Regression and Poststratification with Structured Priors
[摘要] A central theme in the field of survey statistics is estimating population-level quantities through data coming from potentially non-representative samples of the population. Multilevel regression and poststratification (MRP), a model-based approach, is gaining traction against the traditional weighted approach for survey estimates. MRP estimates are susceptible to bias if there is an underlying structure that the methodology does not capture. This work aims to provide a new framework for specifying structured prior distributions that lead to bias reduction in MRP estimates. We use simulation studies to explore the benefit of these prior distributions and demonstrate their efficacy on non-representative US survey data. We show that structured prior distributions offer absolute bias reduction and variance reduction for posterior MRP estimates in a large variety of data regimes.
[发布日期] [发布机构]
[效力级别] [学科分类] 统计和概率
[关键词] multilevel regression and poststratification;non-representative data;bias reduction;small-area estimation;structured prior distributions;Stan;Integrated Nested Laplace Approximation (INLA). [时效性]