Developmental- and stress-mediated expression analysis of cinnamoyl-CoA reductase 1 (CCR1) from Hibiscus cannabinus
[摘要] Cinnamoyl-CoA reductase (CCR, EC 1.2.1.44) is an important enzyme responsible for lignin biosynthesis in plants that belongs to the family of oxidoreductases. We analyzed developmental, tissue specific, and stressmediated expression of the HcCCR1 (HM151381) gene from Hibiscus cannabinus. Gene expression analysis revealed that HcCCR1 was highly upregulated in mature leaves of 16-week-old plants. The maximum downregulation and upregulation of HcCCR1 was caused by cold and MeJA treatment, respectively. Sequence analysis demonstrated that HcCCR1 protein (ADK24219) contains a conserved NWYCYGK catalytic domain, while bioinformatics prediction indicated the presence of a palmitoylation site in the HcCCR1 protein. Phylogenetic analysis showed that HcCCR1 is more closely related to HcCCR2 (AGJ84130) and AtCCR proteins than CCR-like proteins. Comparative sequence analysis showed presence of significant differences between HcCCR1 and HcCCR2, which are homologs of H. cannabinus. Expression analysis demonstrated that the HcCCR1 gene is modulated by different external stresses.
[发布日期] [发布机构]
[效力级别] [学科分类] 纳米科学和纳米技术
[关键词] cinnamoyl-CoA reductase;catalytic domain;palmitoylation;abiotic stress [时效性]