NSP4 as adjuvant for immunogenicity and design of effective therapeutic HPV16 E6/E7/L1 DNA vaccine in tumor-bearing and healthy C57BL/6 mice
[摘要] IntroductionIn humans, approximately 5% of all cancers are attributable to HPV infection. Prophylactic vaccines can inhibit viral migration and persistence. However, further studies are still required to develop such treatments. To achieve this goal, we designed a therapeutic HPV DNA vaccine encoding a construct of E6/E7/L1 and used NSP4 antigen as an adjuvant to assess the efficiency of this construct in generating antigen-specific antitumor immune responses.Materials and methodsSixty female C57BL/6 mice (6–8 weeks old) were purchased from the Institute Pasteur of Iran. Through a subcutaneous (s.c) injection of a suspension of 100 µl PBS containing 106 TC-1 cells/mouse in the back side, 30 of them became cancerous, while 30 of them were healthy control mice. To amplify E6/E7/L1-pcDNA3 and NSP4-pcDNA3, the competent cells of DH5α and to generate a tumor, TC-1 cell line was used. Mice were then immunized with the HPV DNA vaccine. Cell proliferation was assessed by MTT assay. Finally, cytokine responses (IL-4, IL-12, IFN- γ) were measured in the supernatant of mice spleen cells.ResultMice receiving the NSP4/E6-E7-L1 vaccine had the highest stimulatory index compared to other groups, although it was not statistically significant. Interleukin 4/12 and IFN-γ production were significantly higher in E6-E7-L1 / NSP4 group and E6-E7-L1 group compared to other groups (P < 0.05). Among different groups, E6/E7/L1 + NSP4 group was able to slow down the tumor growth process, but it was not significant (p > 0.05). Among the aforementioned cytokines, IFN-γ and IL-12 are among the cytokines that stimulate the Th1 pathway and IL-4 cytokine stimulates the Th2 pathway and B lymphocytes.ConclusionOur data revealed that the present vaccine can reduce tumor size, and cytokine measurement showed that it stimulates innate and acquired immune responses, thus it can be a therapeutic vaccine in the tumor-bearing mice model.
[发布日期] 2023-07-31 [发布机构]
[效力级别] [学科分类]
[关键词] Vaccine;HPV;E6/E7/L1;Adjuvant;NSP4 [时效性]