Laboratory blood test profiling reveals distinct biochemical and hemocyte features of KRAS mutated non-small cell lung cancer
[摘要] Background: The testing for capability of some routine blood test parameters to reflect the biology of non-small cell lung carcinoma with different driver mutations is of great interest and practice significance. We aim to screen these variables and, if allowed, develop a novel predictive model based on results of these routine blood tests commonly performed in clinical practice to inform which can help doctors assess the patient’s genetic mutation status as early as possible before surgery. Methods: For the exploration cohort, we included 1,595 patients who were diagnosed with non-small cell lung cancer (NSCLC) and genetically profiled by a next-generation sequencing panel in the First Affiliated Hospital of Guangzhou Medical University. The external validation cohort, which consists of 197 NSCLC cancer patients from Sun Yat-sen University Cancer Hospital, was subsequently established. Results: We analyzed the association between 46 frequently tested laboratory variables and different genetic mutation types. KRAS mutation was found to be a unique subtype that exclusively correlated with several blood parameters in our study. Least absolute shrinkage and selection operator (LASSO) regression was performed, and the following parameters were found to be significantly associated with KRAS mutation: triglycerides [odds ratio (OR) =1.63], arterial oxygen partial pressure (OR =0.97), uric acid (OR =1.01), basophil count (OR =1.41), eosinophil count (OR =1.146), fibrinogen (OR =1.42), standard bicarbonate (OR =0.85), high-density lipoprotein cholesterol (OR =0.18), alpha-L-fucosidase (OR =1.07). The areas under the receiver-operator characteristic curve in the training set and the external validation set were 0.85 [95% confidence interval (CI): 0.81–0.88] and 0.81 (95% CI: 0.71–0.91), respectively. Conclusions: We developed a non-invasive, more cost-effective predictive model of NSCLC based on routinely available variables, with practical predictive power. This model can be used as a practical screening tool to guide the use of more specialized and expensive molecular assays for KRAS mutation in NSCLC. However, further studies are warranted to investigate the mechanism underlying such association between KRAS mutations and the related parameters of blood tests.
[发布日期] [发布机构]
[效力级别] [学科分类] 呼吸医学
[关键词] Non-small cell lung cancer (NSCLC);blood parameter;KRAS;predictive model;metabolic factor [时效性]