已收录 271055 条政策
 政策提纲
  • 暂无提纲
Some norm inequalities for some positive block matrices
[摘要] We review Lin's inequality from \cite{ML} and (re)prove that if $M=[X_{i,j}]_{i,j=1}^n$ is positive semi-definite then $\bigoplus_{i=1}^{n}(X_{i,i}-\sum\limits_{j\neq i}X_{j,j})\le M^\tau \le I_n \otimes \sum\limits_{i=1}^nX_{i,i}$ where $M^{\tau}$ is the partial transpose of $M$. In particular for such $M\in {\mathbb{M}}_n^{{+}}({\mathbb{M}}_m)$ we prove that $\|M\|\le \min(m,n)\| \sum\limits_{i=1}^nX_{i,i}\|$ for all symmetric norms. Some classical results are also discussed in terms of permutations.
[发布日期]  [发布机构] 
[效力级别]  [学科分类] 数学(综合)
[关键词] 15A60;15A42;15B99;05A18. [时效性] 
   浏览次数:1      统一登录查看全文      激活码登录查看全文