Data Clustering-based Metaheuristic for Physical Internet Supply Chain Network
[摘要] In this study, a data clustering-driven technique is proposed for a Physical Internet Supply Chain Network (PI-SCN) to reduce data complexity, process time compression, and lankness of process optimization. Given a set of data points, a clustering algorithm aims to classify each data-points into a specific group. Each group should have similar properties and/or features, while data points in different groups should have highly dissimilar properties and/or features. The motivation of this study follows. Firstly, an improved metaheuristic algorithm named ISCA is proposed as a new data clustering technique to improve and incorporate a variety of PI-SCN decisions. By this framework, we propose a tool to make clear decisions for enterprise proprietors. The robustness of the proposed approach is tested against five recent metaheuristics using twelve benchmark datasets. The presented technique performs more satisfactory accurateness and complete coverage of search space in comparison to the existing methods.
[发布日期] [发布机构]
[效力级别] [学科分类] 计算机科学(综合)
[关键词] Physical Internet Supply Chain Network (PI-SCN);Data Clustering;Sine Cosine Algorithm (SMA);Accelerated Particle Swarm Optimization (APSO) [时效性]