已收录 272912 条政策
 政策提纲
  • 暂无提纲
Different hybrid machine intelligence techniques for handling IoT-based imbalanced data
[摘要] In the era of automatic task processing or designing complex algorithms, to analyse data, it is always pertinent to find real-life solutions using cutting-edge tools and techniques to generate insights into the data. The data-driven machine learning models are now offering more or less worthy results when they are certainly balanced in the input data sets. Imbalanced data occurs when an unequal distribution of classes occurs in the input datasets. Building a predictive model on the imbalanced data set would cause a model that appears to yield high accuracy but does not generalize well to the new data in the minority class. Now the time has come to look into the datasets which are not so-called ‘balanced’ in nature but such datasets are generally encountered frequently in a workspace. To prevent creating models with false levels of accuracy, the imbalanced data should be rearranged before creating a predictive model. Those data are, sometimes, voluminous, heterogeneous and complex in nature and generate from different autonomous sources with distributed and decentralized control. The driving force is to efficiently handle these data sets using latest tools and techniques for research and commercial insights. The present article provides different such tools and techniques, in different computing frameworks, to handle such Internet of Things and other related datasets to review common techniques for handling imbalanced data in data ecosystems and offers a comparative data modelling framework in Keras for balanced and imbalanced datasets.
[发布日期]  [发布机构] 
[效力级别]  [学科分类] 数学(综合)
[关键词] neural nets;artificial intelligence;medical computing;Internet of Things;pattern classification;learning (artificial intelligence) [时效性] 
   浏览次数:3      统一登录查看全文      激活码登录查看全文