Functional differentiation of the dorsal striatum: a coordinate-based neuroimaging meta-analysis
[摘要] Background: The dorsal striatum, a nucleus in the basal ganglia, plays a key role in the execution of cognitive functions in the human brain. Recent studies have focused on how the dorsal striatum participates in a single cognitive function, whereas the specific roles of the caudate and putamen in performing multiple cognitive functions remain unclear. In this paper we conducted a meta-analysis of the relevant neuroimaging literature to understand the roles of subregions of the dorsal striatum in performing different functions. Methods: PubMed, Web of Science, and BrainMap Functional Database were searched to find original functional magnetic resonance imaging (fMRI) studies conducted on healthy adults under reward, memory, emotion, and decision-making tasks, and relevant screening criteria were formulated. Single task activation, contrast activation, and conjunction activation analyses were performed using the activation likelihood estimation (ALE) method for the coordinate-based meta-analysis to evaluate the differences and linkages. Results: In all, 112 studies were included in this meta-analysis. Analysis revealed that, of the 4 single activation tasks, reward, memory, and emotion tasks all activated the putamen more, whereas decision-making tasks activated the caudate body. Contrast analysis showed that the caudate body played an important role in the 2 cooperative activation tasks, but conjunction activation results found that more peaks appeared in the caudate head. Discussion: Different subregions of the caudate and putamen assume different roles in processing complex cognitive behaviors. Functional division of the dorsal striatum identified specific roles of 15 different subregions, reflecting differences and connections between the different subregions in performing different cognitive behaviors.
[发布日期] [发布机构]
[效力级别] [学科分类] 外科医学
[关键词] Activation likelihood estimation (ALE);dorsal striatum;functional differentiation;functional magnetic resonance imaging (fMRI);meta-analysis [时效性]