Space Environment Factors Affecting the Performance of International Space Station Materials: The First Two Years of Flight Operations
[摘要] In this paper, the natural and induced space environment factors affecting materials performance on ISS are described in some detail. The emphasis will be on ISS flight experience and the more significant design and development issues of the last two years. The intent is to identify and document the set of space environment factors, affecting materials, that are producing the largest impacts on the ISS flight hardware verification and acceptance process and on ISS flight operations. Orbital inclination (S1.6 ) and altitude (nominal3S0 km to 400 km altitude) determine the set of natural environment factors affecting the functional life of materials and subsystems on ISS. ISS operates in the F2 region of Earth's ionosphere in well-defined fluxes of atomic oxygen, other ionospheric plasma species, and solar UV, VUV, and x-ray radiation, as well as galactic cosmic rays, trapped radiation, and solar cosmic rays (1,2). The high latitude orbital environment also exposes external surfaces to significantly less well-defined or predictable fluxes of higher energy trapped electrons and auroral electrons (3 ,4). The micrometeoroid and orbital debris environment is an important determinant of spacecraft design and operations in any orbital inclination. Environment factors induced by ISS flight operations include ram-wake effects, magnetic induction voltages arising from flight through Earth's magnetic field, hypergolic thruster plume impingement from proximity operations of visiting vehicles, materials outgassing, venting and dumping of fluids, ISS thruster operations, as well as specific electrical power system interactions with the ionospheric plasma (S-7). ISS must fly in a very limited number of approved flight attitudes leading to location specific environmental exposures and extreme local thermal environments (8). ISS is a large vehicle and produces a deep wake structure from which both ionospheric plasma and neutrals (atomic oxygen) are largely excluded (9-11). At high latitude, the ISS wake may produce a spacecraft charging environment similar to that experienced by the DMSP and Freja satellites (800 to 100 km altitude polar orbits), especially during geo-magnetic disturbances (12-14). ISS is also subject to magnetic induction voltages (VxB L) on conducting structure, a result of high velocity flight through Earth's magnetic field. The magnitude of the magnetic induction voltage varies with location on ISS, as well as the relative orientation of the vehicle velocity vector and planetary magnetic field vector, leading to maximum induction voltages at high latitude (15). The space environment factors, natural and induced, that have had the largest impact on pre-launch ISS flight hardware verification and flight operations during the first two years of ISS flight operations are listed below and grouped according to the physical and chemical processes driving their interaction with ISS materials.
[发布日期] 2003-05-01 [发布机构]
[效力级别] [学科分类] 航空航天科学
[关键词] [时效性]