已收录 271075 条政策
 政策提纲
  • 暂无提纲
Optical Modification of Casimir Forces for Improved Function of Micro-and Nano-Scale Devices
[摘要] Recently, there has been a considerable effort to study the Casimir and van der Waals forces, enabled by the improved ability to measure small forces near surfaces. Because of the continuously growing role of micro- and nanomechanical devices, the focus of this activity has shifted towards the ability to control these forces. Possible approaches to manipulating the Casimir force include development of composite materials, engineered nanostructures, mixed-phase materials, or active elements. So far, practical success has been limited. The role of geometrical factors in the Casimir force is significant. It is known, for example, that the Casimir force between two spherical shells enclosed one into the other is repulsive instead of normal attractive. Unfortunately, nanosurfaces with this topology are very difficult to make. A more direct approach to manipulating and neutralizing the Casimir force is using external mechanical or electromagnetic forces. Unfortunately, the technological overhead of such an approach is quite large. Using electromagnetic compensation instead of mechanical will considerably reduce this overhead and at the same time provide the degree of control over the Casimir force that mechanical springs cannot provide. A mechanical analog behind Casimir forces is shown.
[发布日期] 2010-10-01 [发布机构] 
[效力级别]  [学科分类] 原子、分子光学和等离子物理
[关键词]  [时效性] 
   浏览次数:10      统一登录查看全文      激活码登录查看全文