Special Component Designs for Differential-Amplifier MMICs
[摘要] Special designs of two types of electronic components transistors and transmission lines have been conceived to optimize the performances of these components as parts of waveguide-embedded differential-amplifier monolithic microwave integrated circuits (MMICs) of the type described in the immediately preceding article. These designs address the following two issues, the combination of which is unique to these particular MMICs: Each MMIC includes a differential double-strip transmission line that typically has an impedance between 60 and 100 W. However, for purposes of matching of impedances, transmission lines having lower impedances are also needed. The transistors in each MMIC are, more specifically, one or more pair(s) of InP-based high-electron-mobility transistors (HEMTs). Heretofore, it has been common practice to fabricate each such pair as a single device configured in the side-to-side electrode sequence source/gate/drain/gate/source. This configuration enables low-inductance source grounding from the sides of the device. However, this configuration is not suitable for differential operation, in which it is necessary to drive the gates differentially and to feed the output from the drain electrodes differentially. The special transmission-line design provides for three conductors, instead of two, in places where lower impedance is needed. The third conductor is a metal strip placed underneath the differential double-strip transmission line. The third conductor increases the capacitance per unit length of the transmission line by such an amount as to reduce the impedance to between 5 and 15 W. In the special HEMT-pair design, the side-to-side electrode sequence is changed to drain/gate/source/gate/ drain. In addition, the size of the source is reduced significantly, relative to corresponding sizes in prior designs. This reduction is justified by the fact that, by virtue of the differential configuration, the device has an internal virtual ground, and therefore there is no need for a low-resistance contact between the source and the radio-frequency circuitry. The source contact is needed only for DC biasing. These designs were implemented in a single-stage-amplifier MMIC. In a test at a frequency of 305 GHz, the amplifier embedded in a waveguide exhibited a gain of 0 dB; after correcting for the loss in the waveguide, the amplifier was found to afford a gain of 0.9 dB. In a test at 220 GHz, the overall gain of the amplifier- and-waveguide assembly was found to be 3.5 dB.
[发布日期] 2010-12-01 [发布机构]
[效力级别] [学科分类] 航空航天科学
[关键词] [时效性]