已收录 272606 条政策
 政策提纲
  • 暂无提纲
Irradiation of FeS: Implications for the Lifecycle of Sulfur in the Interstellar Medium and Presolar FeS Grains
[摘要] Fe(Ni) sulfides are ubiquitous in chondritic meteorites and cometary samples where they are the dominant host of sulfur. Despite their abundance in these early solar system materials, their presence in interstellar and circumstellar environments is poorly understood. Fe-sulfides have been reported from astronomical observations of pre- and post-main sequence stars [1, 2] and occur as inclusions in bonafide circumstellar silicate grains [3, 4]. In cold, dense molecular cloud (MC) environments, sulfur is highly depleted from the gas phase [e.g. 5], yet observations of sulfur-bearing molecules in dense cores find a total abundance that is only a small fraction of the sulfur seen in diffuse regions [6], therefore the bulk of the depletion must reside in an abundant unobserved phase. In stark contrast, sulfur is essentially undepleted from the gas phase in the diffuse interstellar medium (ISM) [7-9], indicating that little sulfur is incorporated into solid grains in this environment. This is a rather puzzling observation unless Fe-sulfides are not produced in significant quantities in stellar outflows, or their lifetime in the ISM is very short due to rapid destruction. The main destruction mechanism is sputtering due to supernova shocks in the warm, diffuse ISM [10]. This process involves the reduction of Fe-sulfide with the production of Fe metal as a by-product and returning S to the gas phase. In order to test this hypothesis, we irradiated FeS and analyzed the resulting material using X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM).
[发布日期] 2010-03-01 [发布机构] 
[效力级别]  [学科分类] 空间科学
[关键词]  [时效性] 
   浏览次数:7      统一登录查看全文      激活码登录查看全文