已收录 273515 条政策
 政策提纲
  • 暂无提纲
Surface-Enhanced X-Ray Fluorescence
[摘要] Surface-enhanced x-ray fluorescence (SEn-XRF) spectroscopy is a form of surface- enhanced spectroscopy that was conceived as a means of obtaining greater sensitivity in x-ray fluorescence (XRF) spectroscopy. As such, SEn-XRF spectroscopy joins the ranks of such other, longer-wavelength surface-enhanced spectroscopies as those based on surface-enhanced Raman scattering (SERS), surface-enhanced resonance Raman scattering (SERRS), and surfaceenhanced infrared Raman absorption (SEIRA), which have been described in previous NASA Tech Briefs articles. XRF spectroscopy has been used in analytical chemistry for determining the elemental compositions of small samples. XRF spectroscopy is rapid and quantitative and has been applied to a variety of metal and mineralogical samples. The main drawback of XRF spectroscopy as practiced heretofore is that sensitivity has not been as high as required for some applications. In SEn-XRF as in the other surface-enhanced spectroscopies, one exploits several interacting near-field phenomena, occurring on nanotextured surfaces, that give rise to local concentrations of incident far-field illumination. In this case, the far-field illumination comes from an x-ray source. Depending on the chemical composition and the geometry of a given nanotextured surface, these phenomena could include the lightning-rod effect (concentration of electric fields at the sharpest points on needlelike surface features), surface plasmon resonances, and grazing incidence geometric effects. In the far field, the observable effect of these phenomena is an increase in the intensity of the spectrum of interest - in this case, the x-ray fluorescence spectrum of chemical elements of interest that may be present within a surface layer at distances no more than a few nanometers from the surface.
[发布日期] 2010-12-01 [发布机构] 
[效力级别]  [学科分类] 航空航天科学
[关键词]  [时效性] 
   浏览次数:13      统一登录查看全文      激活码登录查看全文