已收录 272970 条政策
 政策提纲
  • 暂无提纲
Infrared Sensor on Unmanned Aircraft Transmits Time-Critical Wildfire Data
[摘要] Since 2006, NASA fs Dryden Flight Research Center (DFRC) and Ames Research Center have been perfecting and demonstrating a new capability for geolocation of wildfires and the real-time delivery of data to firefighters. Managed for the Western States Fire Mission, the Ames-developed Autonomous Modular Scanner (AMS), mounted beneath a wing of DFRC fs MQ-9 Ikhana remotely piloted aircraft, contains an infrared sensor capable of discriminating temperatures within 0.5 F (approx. = 0.3 C), up to 1,000 F (approx. = 540 C). The AMS operates like a digital camera with specialized filters to detect light energy at visible, infrared, and thermal wavelengths. By placing the AMS aboard unmanned aircraft, one can gather information and imaging for thousands of square miles, and provide critical information about the location, size, and terrain around fires to commanders in the field. In the hands of operational agencies, the benefits of this NASA research and development effort can support nationwide wildfire fighting efforts. The sensor also provides data for post-burn and vegetation regrowth analyses. The MQ-9 Unmanned Aircraft System (UAS), a version of the Predator-B, can operate over long distances, staying aloft for over 24 hours, and controlled via a satellite-linked command and control system. This same link is used to deliver the fire location data directly to fire incident commanders, in less than 10 minutes from the time of overflight. In the current method, similarly equipped short-duration manned aircraft, with limited endurance and range, must land, hand-carry, and process data, and then deliver information to the firefighters, sometimes taking several hours in the process. Meanwhile, many fires would have moved over great distances and changed direction. Speed is critical. The fire incident commanders must assess a very dynamic situation, and task resources such as people, ground equipment, and retardant-dropping aircraft, often in mountainous terrain obscured by dense smoke.
[发布日期] 2010-12-01 [发布机构] 
[效力级别]  [学科分类] 航空航天科学
[关键词]  [时效性] 
   浏览次数:12      统一登录查看全文      激活码登录查看全文