3D X-Ray Luggage-Screening System
[摘要] A three-dimensional (3D) x-ray luggage- screening system has been proposed to reduce the fatigue experienced by human inspectors and increase their ability to detect weapons and other contraband. The system and variants thereof could supplant thousands of xray scanners now in use at hundreds of airports in the United States and other countries. The device would be applicable to any security checkpoint application where current two-dimensional scanners are in use. A conventional x-ray luggage scanner generates a single two-dimensional (2D) image that conveys no depth information. Therefore, a human inspector must scrutinize the image in an effort to understand ambiguous-appearing objects as they pass by at high speed on a conveyor belt. Such a high level of concentration can induce fatigue, causing the inspector to reduce concentration and vigilance. In addition, because of the lack of depth information, contraband objects could be made more difficult to detect by positioning them near other objects so as to create x-ray images that confuse inspectors. The proposed system would make it unnecessary for a human inspector to interpret 2D images, which show objects at different depths as superimposed. Instead, the system would take advantage of the natural human ability to infer 3D information from stereographic or stereoscopic images. The inspector would be able to perceive two objects at different depths, in a more nearly natural manner, as distinct 3D objects lying at different depths. Hence, the inspector could recognize objects with greater accuracy and less effort. The major components of the proposed system would be similar to those of x-ray luggage scanners now in use. As in a conventional x-ray scanner, there would be an x-ray source. Unlike in a conventional scanner, there would be two x-ray image sensors, denoted the left and right sensors, located at positions along the conveyor that are upstream and downstream, respectively (see figure). X-ray illumination may be provided by a single source or by two sources. The position of the conveyor would be detected to provide a means of matching the appropriate left- and right-eye images of an item under inspection. The appropriate right- and left-eye images of an item would be displayed simultaneously to the right and left eyes, respectively, of the human inspector, using commercially available stereo display screens. The human operator could adjust viewing parameters for maximum viewing comfort. The stereographic images thus generated would differ from true stereoscopic images by small distortions that are characteristic of radiographic images in general, but these distortions would not diminish the value of the images for identifying distinct objects at different depths.
[发布日期] 2006-10-01 [发布机构]
[效力级别] [学科分类] 航空航天科学
[关键词] [时效性]