已收录 273088 条政策
 政策提纲
  • 暂无提纲
Markov Chain Monte Carlo Bayesian Learning for Neural Networks
[摘要] Conventional training methods for neural networks involve starting al a random location in the solution space of the network weights, navigating an error hyper surface to reach a minimum, and sometime stochastic based techniques (e.g., genetic algorithms) to avoid entrapment in a local minimum. It is further typically necessary to preprocess the data (e.g., normalization) to keep the training algorithm on course. Conversely, Bayesian based learning is an epistemological approach concerned with formally updating the plausibility of competing candidate hypotheses thereby obtaining a posterior distribution for the network weights conditioned on the available data and a prior distribution. In this paper, we developed a powerful methodology for estimating the full residual uncertainty in network weights and therefore network predictions by using a modified Jeffery's prior combined with a Metropolis Markov Chain Monte Carlo method.
[发布日期] 2011-03-01 [发布机构] 
[效力级别]  [学科分类] 数学(综合)
[关键词]  [时效性] 
   浏览次数:3      统一登录查看全文      激活码登录查看全文