Lunar Regolith Simulant Feed System for a Hydrogen Reduction Reactor System
[摘要] One of the goals of In-Situ Resource Utilization (ISRU) on the moon is to produce oxygen from the lunar regolith which is present in the form of Ilmenite (FeTi03) and other compounds. A reliable and attainable method of extracting some of the oxygen from the lunar regolith is to use the hydrogen reduction process in a hot reactor to create water vapor which is then condensed and electrolyzed to obtain oxygen for use as a consumable. One challenge for a production system is to reliably acquire the regolith with an excavator hauler mobility platform and then introduce it into the reactor inlet tube which is raised from the surface and above the reactor itself. After the reaction, the hot regolith (-1000 C) must be expelled from the reactor for disposal by the excavator hauler mobility system. In addition, the reactor regolith inlet and outlet tubes must be sealed by valves during the reaction in order to allow collection of the water vapor by the chemical processing sub-system. These valves must be able to handle abrasive regolith passing through them as well as the heat conduction from the hot reactor. In 2008, NASA has designed and field tested a hydrogen reduction system called ROxygen in order to demonstrate the feasibility of extracting oxygen from lunar regolith. The field test was performed with volcanic ash known as Tephra on Mauna Kea volcano on the Big Island of Hawai'i. The tephra has similar properties to lunar regolith, so that it is regarded as a good simulant for the hydrogen reduction process. This paper will discuss the design, fabrication, operation, test results and lessons learned with the ROxygen regolith feed system as tested on Mauna Kea in November 2008.
[发布日期] 2009-01-05 [发布机构]
[效力级别] [学科分类] 天文学(综合)
[关键词] [时效性]