已收录 273123 条政策
 政策提纲
  • 暂无提纲
A Hybrid Parachute Simulation Environment for the Orion Parachute Development Project
[摘要] A parachute simulation environment (PSE) has been developed that aims to take advantage of legacy parachute simulation codes and modern object-oriented programming techniques. This hybrid simulation environment provides the parachute analyst with a natural and intuitive way to construct simulation tasks while preserving the pedigree and authority of established parachute simulations. NASA currently employs four simulation tools for developing and analyzing air-drop tests performed by the CEV Parachute Assembly System (CPAS) Project. These tools were developed at different times, in different languages, and with different capabilities in mind. As a result, each tool has a distinct interface and set of inputs and outputs. However, regardless of the simulation code that is most appropriate for the type of test, engineers typically perform similar tasks for each drop test such as prediction of loads, assessment of altitude, and sequencing of disreefs or cut-aways. An object-oriented approach to simulation configuration allows the analyst to choose models of real physical test articles (parachutes, vehicles, etc.) and sequence them to achieve the desired test conditions. Once configured, these objects are translated into traditional input lists and processed by the legacy simulation codes. This approach minimizes the number of sim inputs that the engineer must track while configuring an input file. An object oriented approach to simulation output allows a common set of post-processing functions to perform routine tasks such as plotting and timeline generation with minimal sensitivity to the simulation that generated the data. Flight test data may also be translated into the common output class to simplify test reconstruction and analysis.
[发布日期] 2011-05-23 [发布机构] 
[效力级别]  [学科分类] 数学(综合)
[关键词]  [时效性] 
   浏览次数:5      统一登录查看全文      激活码登录查看全文