已收录 273093 条政策
 政策提纲
  • 暂无提纲
Comparison of VIIRS Prelaunch RVS Among Independent Studies
[摘要] The Visible Infrared Imaging Radiometer Suite (VIIRS) is a key sensor carried on the NPOESS (National Polar-orbiting Operational Environmental Satellite System), upgraded and developed recently from heritage instruments including AVHRR, OLS, MODIS, and SeaWiFS. It has on-board calibration components including a solar diffuser (SD) and a solar diffuser stability monitor (SDSM) for the reflective solar bands (RSB), a V-groove blackbody for the thermal emissive bands (TEB), and a space view (SV) port for background subtraction. These on-board calibrators are located at fixed scan angles. The VIIRS response versus scan angle (RVS) was characterized prelaunch in lab ambient conditions and will be used on-orbit to characterize the response for the all scan angles relative to the calibrator scan angle (SD for RSB and blackbody for TEB). Since the RVS is vitally important to the quality of calibrated radiance products, several independent studies were performed and their results were compared and validated. This document provides RVS results from three groups: the NPP Instrument Calibration Support Team (NICST), Raytheon, and the Aerospace Corporation. A comparison of the RVS results obtained using a 2nd order polynomial fit to measurement data is conducted for each band, detector, and half angle mirror (HAM) side. The associated RVS fitting residuals are examined and compared with the relative differences in RVS found between independent studies. Results show that the agreement is within 0.1% and comparable with fitting residuals for all bands except for RSB band M9, where a difference of 0.2% results from the application of the atmospheric water vapor correction for laboratory conditions during the test by Raytheon. NICST has slightly larger RSB RVS uncertainties but still well within the 0.3% total uncertainty allowed for the RVS characterization defined in the Performance Verification Plan.
[发布日期] 2011-08-21 [发布机构] 
[效力级别]  [学科分类] 航空航天科学
[关键词]  [时效性] 
   浏览次数:20      统一登录查看全文      激活码登录查看全文