Aligning Three Off-Axis Mirrors with Help of a DOE
[摘要] A proposed method based on the use of a special-purpose diffractive optical element (DOE) would simplify (relative to prior methods) the alignment of three off-axis mirrors that constitute an imaging optical system. The method would exploit the fact that a DOE can be fabricated lithographically with high accuracy by electron-beam lithography in a thin film of poly(methyl methacrylate). The method would effectively transfer much of the problem of obtaining the needed accuracy from the mechanical-mirror-alignment domain to the lithographic domain. Unlike other methods that depend on specific symmetries (e.g., sphericity and/or concentricity), this method is expected to apply with equal ease and accuracy to mirrors of any configuration including aspherical, decentered mirrors. Assuming that one of the mirrors of a general three-mirror imaging optical system can serve as a reference for the alignment of the other two mirrors, such a system has 12 degrees of freedom in alignment. In the proposed method, one would use an interferometer in combination with a DOE to effect precise and relatively rapid and easy alignment of two of the mirrors with respect to each other, thus reducing the alignment task to that of the six degrees of freedom of the remaining mirror. The figure depicts a representative three-mirror off-axis imaging system, wherein the primary and tertiary mirrors (M1 and M3, respectively) are concave and the secondary mirror (M2) is convex. The DOE for aligning this system would be fabricated on the right surface of an optical flat and could be made to have either negative or positive focusing power, depending on the requirements of the specific application. The DOE could be designed to be placed at any convenient distance from M1 and M3 - again, depending on the application. The DOE would be illuminated with light coming from the left, generated by an interferometer. First, assuming the optical flat is of high quality, the plane of the DOE would be aligned perpendicular to the collimated beam by use of light reflected from the left face of the optical flat. The DOE would comprise two independent areas: one dedicated to M1, the other to M3. The portions of the collimated beam passing through those areas would be diffracted towards the corresponding mirrors. A mask, not shown in the figure, could be used to prevent light from passing through the rest of the area of the optical flat. Light rays reflected from M1 and M3 would retrace their paths through the DOE and would propagate leftward to the interferometer.
[发布日期] 2003-01-01 [发布机构]
[效力级别] [学科分类] 航空航天科学
[关键词] [时效性]