已收录 273170 条政策
 政策提纲
  • 暂无提纲
Comparison of In-Situ, Model and Ground Based In-Flight Icing Severity
[摘要] As an aircraft flies through supercooled liquid water, the liquid freezes instantaneously to the airframe thus altering its lift, drag, and weight characteristics. In-flight icing is a contributing factor to many aviation accidents, and the reliable detection of this hazard is a fundamental concern to aviation safety. The scientific community has recently developed products to provide in-flight icing warnings. NASA's Icing Remote Sensing System (NIRSS) deploys a vertically--pointing Ka--band radar, a laser ceilometer, and a profiling multi-channel microwave radiometer for the diagnosis of terminal area in-flight icing hazards with high spatial and temporal resolution. NCAR s Current Icing Product (CIP) combines several meteorological inputs to produce a gridded, three-dimensional depiction of icing severity on an hourly basis. Pilot reports are the best and only source of information on in-situ icing conditions encountered by an aircraft. The goal of this analysis was to ascertain how the testbed NIRSS icing severity product and the operational CIP severity product compare to pilot reports of icing severity, and how NIRSS and CIP compare to each other. This study revealed that the icing severity product from the ground-based NASA testbed system compared very favorably with the operational model-based product and pilot reported in-situ icing.
[发布日期] 2011-12-01 [发布机构] 
[效力级别]  [学科分类] 航空航天科学
[关键词]  [时效性] 
   浏览次数:13      统一登录查看全文      激活码登录查看全文