已收录 271055 条政策
 政策提纲
  • 暂无提纲
Metals and Oxygen Mining from Meteorites, Asteroids and Planets using Reusable Ionic Liquids
[摘要] In order for humans to explore beyond Low Earth Orbit both safely and economically, it will be essential to learn how to make use of in situ materials and energy in an environment much different than on earth. Precursor robotic missions will be necessary to determine what resources will be available and to demonstrate the capabilities for their use. To that end, we have recently been studying acidic Ionic Liquid (IL) systems for use in a low temperature (< 200 C) process to solubilize regolith, and to extract, as water, the oxygen available in metal oxides. Using this method, we have solubilized lunar regolith simulant (JSC-1A), as well as extraterrestrial materials in the form of meteorites, and have extracted up to 80% of the available oxygen. Moreover, by using a hydrogen gas electrode, we have shown that the IL can be regenerated at the anode and metals (e.g. iron) can be plated onto the cathode. These results indicate that IL processing is an excellent candidate for extracting oxygen in situ, for life support and propulsion, and for extracting metals to be used as feedstock in fabrication processes. We have obtained small amounts of meteorite materials believed by meteoriticists to have originated from our moon, Mars, and the asteroid Vesta, and were able to solubilize those using acidic IL systems. From the Vesta meteorite, we were able to extract about 60% of the available oxygen as water. As far as is known, this is the first time that extraterrestrial/earth hybrid water has been obtained. NMR analysis provided proof that the liquid retrieved is indeed water. We have also been able to electro-plate nickel and iron contained in meteorite material. By varying voltage they can be plated separately (electro-winning), and we plan to soon have sufficient quantities to form usable parts utilizing the additive manufacturing process.
[发布日期] 2012-11-11 [发布机构] 
[效力级别]  [学科分类] 地质物理学
[关键词]  [时效性] 
   浏览次数:11      统一登录查看全文      激活码登录查看全文