Large-scale analytics and optimization in urban transportation : improving public transit and its integration with vehicle-sharing services
[摘要] Public transportation is undeniably an effective way to move a large number of people in a city. Its ineffectiveness, such as long travel times, poor coverage, and lack of direct services, however, makes it unappealing to many commuters. In this thesis, we address some of the shortcomings and propose solutions for making public transportation more preferable. The first part of this thesis is focused on improving existing bus services to provide higher levels of service. We propose an optimization model to determine limited-stop service to be operated in parallel with local service to maximize total user welfare. Theoretical properties of the model are established and used to develop an efficient solution approach. We present numerical results obtained using real-world data and demonstrate the benefits of limited-stop services. The second part of this thesis concerns the design of integrated vehicle-sharing and public transportation services. One-way vehicle-sharing services can provide better access to existing public transportation and additional options for trips beyond those provided by public transit. The contributions of this part are twofold. First, we present a framework for evaluating the impacts of integrating one-way vehicles haring service with existing public transportation. Using publicly available data, we construct a graph representing a multi-modal transportation service. Various evaluation metrics based on centrality indices are proposed. Additionally, we introduce the notion of a transfer tree and develop a visualization tool that enables us to easily compare commuting patterns from different origins. The framework is applied to assess the impact of Hubway (a bike-sharing service) on public transportation service in the Boston metropolitan area. Second, we present an optimization model to select a subset of locations at which installing vehicle-sharing stations minimizes overall travel time over the integrated network. Benders decomposition is used to tackle large instances. While a tight formulation generally generates stronger Benders cuts, it requires a large number of variables and constraints, and hence, more computational effort. We propose new algorithms that produce strong Benders cuts quickly by aggregating various variables and constraints. Using data from the Boston metropolitan area, we present computational experiments that confirm the effectiveness of our solution approach.
[发布日期] [发布机构] Massachusetts Institute of Technology
[效力级别] [学科分类]
[关键词] [时效性]