The Astromaterials X-Ray Computed Tomography Laboratory at Johnson Space Center
[摘要] The Astromaterials Acquisition and Curation Office at NASA's Johnson Space Center (hereafter JSC curation) is the past, present, and future home of all of NASA's astromaterials sample collections. JSC curation currently houses all or part of nine different sample collections: (1) Apollo samples (1969), (2) Lunarsamples (1972), (3) Antarctic meteorites (1976), (4) Cosmic Dust particles (1981), (5) Microparticle Impact Collection (1985), (6) Genesis solar wind atoms (2004); (7) Stardust comet Wild-2 particles (2006), (8) Stardust interstellar particles (2006), and (9) Hayabusa asteroid Itokawa particles (2010). Each sample collection is housed in a dedicated clean room, or suite of clean rooms, that is tailored to the requirements of that sample collection. Our primary goals are to maintain the long-term integrity of the samples and ensure that the samples are distributed for scientific study in a fair, timely, and responsible manner, thus maximizing the return on each sample. Part of the curation process is planning for the future, and we also perform fundamental research in advanced curation initiatives. Advanced Curation is tasked with developing procedures, technology, and data sets necessary for curating new types of sample collections, or getting new results from existing sample collections [2]. We are (and have been) planning for future curation, including cold curation, extended curation of ices and volatiles, curation of samples with special chemical considerations such as perchlorate-rich samples, and curation of organically- and biologically-sensitive samples. As part of these advanced curation efforts we are augmenting our analytical facilities as well. A micro X-Ray computed tomography (micro-XCT) laboratory dedicated to the study of astromaterials will be coming online this spring within the JSC Curation office, and we plan to add additional facilities that will enable nondestructive (or minimally-destructive) analyses of astromaterials in the near future (micro-XRF, confocal imaging Raman Spectroscopy). These facilities will be available to: (1) develop sample handling and storage techniques for future sample return missions; (2) be utilized by PET for future sample return missions; (3) be used for retroactive PET (Positron Emission Tomography)-style analyses of our existing collections; and (4) for periodic assessments of the existing sample collections. Here we describe the new micro-XCT system, as well as some of the ongoing or anticipated applications of the instrument.
[发布日期] 2017-03-20 [发布机构]
[效力级别] [学科分类] 天文学(综合)
[关键词] [时效性]