Nanochanneled Device and Related Methods
[摘要] A nanochannel delivery device and method of manufacturing and use. The nanochannel delivery device comprises an inlet, an outlet, and a nanochannel. The nanochannel may be oriented parallel to the primary plane of the nanochannel delivery device. The inlet and outlet may be in direct fluid communication with the nanochannel. Considerable advances have been made in the field oftherapeutic agent (e.g. drug) delivery technology over thelast three decades, resulting in many breakthroughs in clinicalmedicine. The creation of therapeutic agent deliverydevices that are capable of delivering therapeutic agents incontrolled ways is still a challenge. One of the majorrequirements for an implantable drug delivery device iscontrolled release of therapeutic agents, ranging from smalldrug molecules to larger biological molecules. It is particularlydesirable to achieve a continuous passive drug releaseprofile consistent with zero order kinetics whereby theconcentration of drug in the bloodstream remains constantthroughout an extended delivery period.These devices have the potential to improve therapeuticefficacy, diminish potentially life-threatening side effects,improve patient compliance, minimize the intervention ofhealthcare personnel, reduce the duration of hospital stays,and decrease the diversion of regulated drugs to abusiveuses.Nanochannel delivery devices may be used in drug deliveryproducts for the effective administration of drugs. Inaddition, nanochannel delivery devices can be used in otherapplications where controlled release of a substance overtime is needed.Embodiments of this invention comprise a nanochanneldelivery device having nanochannels within a structureconfigured to yield high mechanical strength and high flowrates. Various fabrication protocols may be used to form thenanochannel delivery device. Embodiments of the fabricateddevices feature horizontal nanochannel lay-out (e.g., thenanochannel is parallel to the primary plane of the device),high molecule transport rate, high mechanical strength,optional multilayered lay-out, amenability to select channellining materials, and possible transparent top cover. Basedon silicon microfabrication technology, the dimensions ofthe nanochannel area as well as concomitant microchannelareas can be precisely controlled, thus providing a predictable,reliable, constant release rate of drug (or other) moleculesover an extended time period. In certain embodiments,the nanochannel delivery device can be used to builda multilayered nanochannel structure.
[发布日期] 2016-12-27 [发布机构]
[效力级别] [学科分类] 力学,机械学
[关键词] [时效性]