已收录 272893 条政策
 政策提纲
  • 暂无提纲
Physics Design for ARIES-CS
[摘要] Novel stellarator configurations have been developed for ARIES-CS. These configurations are optimized to provide good plasma confinement and flux surface integrity at high beta. Modular coils have been designed for them in which the space needed for the breeding blanket and radiation shielding was specifically targeted such that reactors generating GW electrical powers would require only moderate major radii (<10 m). These configurations are quasi-axially symmetric in the magnetic field topology and have small number of field periods (≤3) and low aspect ratios (≤6). The baseline design chosen for detailed systems and power plant studies has 3 field periods, aspect ratio 4.5 and major radius 7.5 m operating at β~6.5% to yield 1 GW electric power. The shaping of the plasma accounts for ≥75% of the rotational transform. The effective helical ripples are very small (< 0.6% everywhere) and the energy loss of alpha particles is calculated to be ≤5% when operating in high density regimes. An interesting feature in this configuration is that instead of minimizing all residues in the magnetic spectrum, we preferentially retained a small amount of the non-axisymmetric mirror field. The presence of this mirror and its associated helical field alters the ripple distribution, resulting in the reduced ripple-trapped loss of alpha particles despite the long connection length in a tokamak-like field structure. Additionally, we discuss two other potentially attractive classes of configurations, both quasi-axisymmetric: one with only two field periods, very low aspect ratios (~2.5), and less complex coils, and the other with the plasma shaping designed to produce low shear rotational transform so as to assure the robustness and integrity of flux surfaces when operating at high β.
[发布日期] 2007-10-10 [发布机构] 
[效力级别]  [学科分类] 原子、分子光学和等离子物理
[关键词] ALPHA PARTICLES;ASPECT RATIO;BREEDING;CONFIGURATION;DESIGN;ELECTRIC POWER;MAGNETIC FIELDS;MAGNETIC SURFACES;MIRRORS;PHYSICS;PLASMA CONFINEMENT;POWER PLANTS;RADIATIONS;RESIDUES;ROTATIONAL TRANSFORM;SH [时效性] 
   浏览次数:39      统一登录查看全文      激活码登录查看全文