Development of a Prototype Lattice Boltzmann Code for CFD of Fusion Systems.
[摘要] Designs of proposed fusion reactors, such as the ITER project, typically involve the use of liquid metals as coolants in components such as heat exchangers, which are generally subjected to strong magnetic fields. These fields induce electric currents in the fluids, resulting in magnetohydrodynamic (MHD) forces which have important effects on the flow. The objective of this SBIR project was to develop computational techniques based on recently developed lattice Boltzmann techniques for the simulation of these MHD flows and implement them in a computational fluid dynamics (CFD) code for the study of fluid flow systems encountered in fusion engineering. The code developed during this project, solves the lattice Boltzmann equation, which is a kinetic equation whose behaviour represents fluid motion. This is in contrast to most CFD codes which are based on finite difference/finite volume based solvers. The lattice Boltzmann method (LBM) is a relatively new approach which has a number of advantages compared with more conventional methods such as the SIMPLE or projection method algorithms that involve direct solution of the Navier-Stokes equations. These are that the LBM is very well suited to parallel processing, with almost linear scaling even for very large numbers of processors. Unlike other methods, the LBM does not require solution of a Poisson pressure equation leading to a relatively fast execution time. A particularly attractive property of the LBM is that it can handle flows in complex geometries very easily. It can use simple rectangular grids throughout the computational domain -- generation of a body-fitted grid is not required. A recent advance in the LBM is the introduction of the multiple relaxation time (MRT) model; the implementation of this model greatly enhanced the numerical stability when used in lieu of the single relaxation time model, with only a small increase in computer time. Parallel processing was implemented using MPI and demonstrated the ability of the LBM to scale almost linearly. The equation for magnetic induction was also solved using a lattice Boltzmann method. This approach has the advantage that it fits in well to the framework used for the hydrodynamic equations, but more importantly that it preserves the ability of the code to run efficiently on parallel architectures. Since the LBM is a relatively recent model, a number of new developments were needed to solve the magnetic induction equation for practical problems. Existing methods were only suitable for cases where the fluid viscosity and the magnetic resistivity are of the same order, and a preconditioning method was used to allow the simulation of liquid metals, where these properties differ by several orders of magnitude. An extension of this method to the hydrodynamic equations allowed faster convergence to steady state. A new method of imposing boundary conditions using an extrapolation technique was derived, enabling the magnetic field at a boundary to be specified. Also, a technique by which the grid can be stretched was formulated to resolve thin layers at high imposed magnetic fields, allowing flows with Hartmann numbers of several thousand to be quickly and efficiently simulated. In addition, a module has been developed to calculate the temperature field and heat transfer. This uses a total variation diminishing scheme to solve the equations and is again very amenable to parallelisation. Although, the module was developed with thermal modelling in mind, it can also be applied to passive scalar transport. The code is fully three dimensional and has been applied to a wide variety of cases, including both laminar and turbulent flows. Validations against a series of canonical problems involving both MHD effects and turbulence have clearly demonstrated the ability of the LBM to properly model these types of flow. As well as applications to fusion engineering, the resulting code is flexible enough to be applied to a wide range of other flows, in particular those requiring parallel computations with many processors. For example, at present it is being used for studies in aerodynamics and acoustics involving flows at high Reynolds numbers. It is anticipated that it will be used for multiphase flow applications in the near future.
[发布日期] 2007-02-26 [发布机构]
[效力级别] [学科分类] 原子、分子光学和等离子物理
[关键词] MHD;lattice Boltzmann;CFD;magnetohydrodynamics [时效性]