Apparatus for real-time acoustic imaging of Rayleigh-BĂŠnard convection
[摘要] We have successfully designed, built and tested an experimental apparatus which is capable of providing the first real-time ultrasound images of Rayleigh-B\'{e}nard convection in optically opaque fluids confined to large aspect ratio experimental cells. The apparatus employs a modified version of a commercially available ultrasound camera to capture images (30 frames per second) of flow patterns in a fluid undergoing Rayleigh BĂŠnard convection. The apparatus was validated by observing convection rolls in 5cSt polydimethylsiloxane (PDMS) polymer fluid. Our first objective, after having built the apparatus, was to use it to study the sequence of transitions from diffusive to time--dependent heat transport in liquid mercury. The aim was to provide important information on pattern formation in the largely unexplored regime of very low Prandtl number fluids. Based on the theoretical stability diagram for liquid mercury, we anticipated that straight rolls should be stable over a range of Rayleigh numbers, between 1708 and approximately 1900. Though some of our power spectral densities were suggestive of the existence of weak convection, we have been unable to unambiguously visualize stable convection rolls above the theoretical onset of convection in liquid mercury. Currently, we are seeking ways to increase the sensitivity of our apparatus, such as (i) improving the acoustic impedance matching between our materials in the ultrasound path and (ii) reducing the noise level in our acoustic images due to turbulence and cavitation in the cooling fluids circulating above and below our experimental cell. If we are able to convincingly improve the sensitivity of our apparatus, and we still do not observe stable convection rolls in liquid mercury, then it may be the case that the theoretical stability diagram requires revision. In that case, either (i) straight rolls are not stable in a large aspect ratio cell at the Prandtl numbers associated with liquid mercury, or (ii) they are stable, but not in the region of the stability diagram which has been studied by this experimenter. Our second objective was to use the apparatus to study other optically opaque fluids. To this end, we have obtained the first ultrasound images of Rayleigh-BĂŠnard convection in a ferrofluid (EFH1). This project has provided a vehicle for the scientific training of five undergraduate research assistants during the past four years. It allowed students at Wisconsin Lutheran College, a small undergraduate liberal arts college in Milwaukee, to become directly involved in a significant scientific project from its inception through publication of scientific results. The funding of this project has also strengthened the research and teaching infrastructure at the Wisconsin Lutheran College in three major ways. The project has funded the PI and his students in the design and construction of a major piece of scientific apparatus which is capable of performing novel studies of Rayleigh-BĂŠnard convection in opaque fluids. With the acquisition of this apparatus, we are able to embark on a broad research program to study problems in pattern formation in alloys, ferro-fluids, opaque gels, and liquid metals under thermal or magnetic stresses. This project has allowed the PI to purchase auxiliary equipment necessary for establishing a fluid dynamics research laboratory at the College. And this project has served as an impetus for the College to invest in a new machine shop in the basement of the Science Building at the College in order to support this, and other, scientific projects at the College. The PI has presented work funded by this grant at physics and engineering colloquia at a nearby university and at the keynote presentation at an undergraduate research symposium at Wisconsin Lutheran College. Also, the work was featured in local magazine and newspaper articles, and is described on the PI's research webpage. Such scientific outreach serves to advance the cause of science by making it interesting and accessible to a wider audience, and to bring attention to the work done by the Office of Basic Energy Sciences of the Department of Energy.
[发布日期] 2008-10-28 [发布机构]
[效力级别] [学科分类] 材料科学(综合)
[关键词] ACOUSTICS;ALLOYS;ASPECT RATIO;CAVITATION;CONSTRUCTION;CONVECTION;IMPEDANCE;LIQUID METALS;LIQUIDS;MAGNETIC MATERIALS;MERCURY;POLYMERS;PRANDTL NUMBER;RAYLEIGH NUMBER;RESEARCH PROGRAMS;STABILITY;STRESSES;TRAINING;TURBULENCE Rayleigh-Benard;convection;ferrofluid;mercury;pattern [时效性]