Preliminary Design of a Bunching System for the CLIC Polarized Electron Source
[摘要] Major parameters of the CLIC and ILC electron sources are given in Table I. It is shown that the CLIC source needs to provide 312 15-ps-long 2-GHz microbunches. There are two approaches to achieve the time structure [2]: one is to develop a 2-GHz optical pulse train, and the other to develop a 156-ns-long CW optical pulse and use an RF bunching system to generate 312 2-GHz microbunches. The former scheme may ease the RF bunching system but still need it to bunch 100-ps of microbunch down to 15-ps level. Otherwise, a huge amount of energy spread is accumulated when the beam is accelerated through downstream 2-GHz accelerator. In addition, in the former scheme, the space charge is high and surface charge is not yet proven in the parameter regime and 2-GHz mode locked laser is challenging. The latter scheme needs a high-efficiency bunching system to generate 312 15-ps microbunches with 2-GHz repetition rate but it has some notable advantages: a 156-ns CW laser technique is matured, and the charge limit behavior in the scheme is better characterized than that in the former case, as listed in the table. This note presents a design and modeling of the bunching system for the latter scheme to convert a 156-ns CW pulse to 312 15-ps long 2-GHz microbunches.
[发布日期] 2009-10-30 [发布机构]
[效力级别] [学科分类] 核物理和高能物理
[关键词] BEAM BUNCHERS;DESIGN;ELECTRON SOURCES;LASERS;LINEAR COLLIDERS;COMPUTERIZED SIMULATION;SPACE CHARGE Accelerators;ACCPHY [时效性]